This event is endorsed
and organized by

The 3rd EAI International Symposium on Green Communications and Networking

June 27, 2016 | Valencia, Spain

Mohsen Guizani

(S’85–M’89–SM’99–F’09) received the B.S. (with distinction) and M.S. degrees in electrical engineering, the M.S. and Ph.D. degrees in computer engineering from Syracuse University, Syracuse, NY, USA, in 1984, 1986, 1987, and 1990, respectively. He is currently a Professor and the ECE Department Chair at the University of Idaho, USA. Previously, he served as the Associate Vice President of Graduate Studies and Research, Qatar University, Chair of the Computer Science Department, Western Michigan University, Chair of the Computer Science Department, University of West Florida. He also served in academic positions at the University of Missouri-Kansas City, University of Colorado-Boulder, Syracuse University, and Kuwait University. His research interests include wireless communications and mobile computing, computer networks, mobile cloud computing, security, and smart grid. He currently serves on the editorial boards of several international technical journals and the Founder and the Editor-in-Chief of Wireless Communications and Mobile Computing journal (Wiley). He is the author of nine books and more than 400 publications in refereed journals and conferences. He guest edited a number of special issues in IEEE journals and magazines. He also served as a member, Chair, and the General Chair of a number of international conferences. He was selected as the Best Teaching Assistant for two consecutive years at Syracuse University. He was the Chair of the IEEE Communications Society Wireless Technical Committee and the Chair of the TAOS Technical Committee. He served as the IEEE Computer Society Distinguished Speaker from 2003 to 2005.



Spectrum Shortage Challenges and Future Research Directions in Wireless Systems



The enormous success of wireless technology has recently led to an explosive demand for, and hence a shortage of, bandwidth resources. This expected shortage problem is reported to be primarily due to the inefficient, static nature of current spectrum assignment methods. As an initial step towards solving this shortage problem, FCC allowed the so-called opportunistic spectrum access (OSA), which allows unlicensed users to exploit unused licensed spectrum, but in a manner that limits interference to licensed users. Fortunately, technological advances enabled cognitive radios, which are viewed as intelligent communication systems that can learn from their surrounding environments, and adapt their internal operating parameters in real-time to improve spectrum efficiency. Cognitive radios have recently been recognized as the key enabling technology for realizing OSA.

In this talk, Dr. Guizani will talk in details about this shortage and propose a machine learning-based scheme that will exploit the cognitive radios' capabilities to enable effective OSA, thus improving the efficiency of spectrum utilization. He will then discuss future directions for this research field.


Minho Jo

Minho Jo is now a professor in the Department of Computer and Information Science, Korea University, Sejong Metropolitan City, South Korea. He received his BA in the Dept. of Industrial Engineering, Chosun Univ., S. Korea in 1984, and his Ph.D. in the Dept. of Industrial and Systems Engineering, Lehigh University, USA in 1994, respectively. He is one of founders of Samsung Electronics LCD division and he has extensive industrial experiences of ICT. He is the Founder and Editor-in-Chief of the KSII Transactions on Internet and Information Systems (SCI and SCOPUS indexed). He was awarded with Headong Outstanding Scholar Prize with 20,000 US Dollars of prize in Dec., 2011. He is currently an Editor of IEEE Wireless Communications, an Associate Editor of IEEE Internet of Things Journal, an Associate Editor of Security and Communication Networks, and an Associate Editor of Wireless Communications and Mobile Computing, respectively.
He is now Vice President of the Institute of Electronics and Information Engineers (IEIE), and was Vice President of the Korea Information Processing Society (KIPS).
His paper, "Device-to-Device Based Heterogeneous Radio Access Network Architecture for Mobile Cloud Computing, June 2015 (," IEEE Wireless Communications has been ranked in the most popular papers top 11 and his another paper, "Selfish attacks and detection in cognitive radio Ad-Hoc networks," June 2013 ( IEEE Network has been ranked in the most popular papers top 1. Areas of his current interests include LTE-Unlicensed, cognitive radio, IoT, HetNets in 5G, green (energy-efficient) wireless communications, mobile cloud computing, 5G wireless communications, optimization and probability in networks, network security, network function virtualization, and massive MIMO.


Energy-Efficient MAC Protocols in LTE-Unlicensed



LTE-Unlicensed, or LTE-U,is considered one of the latest groundbreaking innovations in wireless communications. LTE-Unlicensed has introduced an additional band, the 5 GHz unlicensed spectrum primarily used for Wi-Fi. There are many challenges related to the coexistence of two different networks, Wi-Fi and LTE networks. For example, LTE network sharing unlicensed bands causes interference with each other, media (spectrum) access collision and additional energy consumption problems.

In Prof. Minho Jo's keynote speaking, he will address the current cutting edge research issues in LTE-Unlicensed such as media access control (MAC) protocols and energy-efficiency technologies in MAC. In particular Prof. Jo will introduce his new energy-efficient software-defined network (SDN)carrier sense LTE-Unlicensed access (CASLUA)protocol in his keynote speaking.